Hi, man kann auch ein wenig Basteln: Durch Erweitern nach der dritten binomischen Formel wird aus Gleichung (1) die Gleichung (3):$$ (1) \quad\sqrt{x+8} - \sqrt{x-8} = 2 \quad|\quad\cdot\left(\sqrt{x+8} + \sqrt{x-8}\right) \\\,\\ (2) \quad16 = 2\cdot\left(\sqrt{x+8} + \sqrt{x-8}\right) \\\,\\ (3) \quad\sqrt{x+8} + \sqrt{x-8} = 8 $$Mit \(\left((3)-(1)\right):2\) erhält man die zu \((1)\) äquivalente, einfache Wurzelgleichung \((4)\):
$$(4) \quad\sqrt{x-8}=3$$die sofort zu
$$(5) \quad x = 17$$ führt. Statt zu substrahieren, kann man auch addieren und erhält
$$(4) \quad\sqrt{x+8}=5$$was wiederum zu \((5)\) führt.