f(x) = 1/4·(x^2 - 2·LN(x))
f'(x) = x/2 - 1/(2·x)
(f'(x))^2 = x^2/4 + 1/(4·x^2) - 1/2
1 + (f'(x))^2 = x^2/4 + 1/(4·x^2) + 1/2
√(1 + (f'(x))^2) = ✓(x^2/4 + 1/(4·x^2) + 1/2) = (x^2 + 1)/(2·x) = x/2 + 1/(2·x)
L(x) = LN(x)/2 + x^2/4
L(e) - L(1) = (LN(e)/2 + e^2/4) - (LN(1)/2 + 1^2/4) = e^2/4 + 1/4 = 2.097