Eine Funktion heisst differenzierbar in einem Punkt, wenn sie dort linearisierbar ist. (Fuer Details sie Deine Unterlagen.) In diesem Fall ist die Funktion in diesem Punkt auch stetig.
Wenn eine Funktion in einem Punkt nicht differenzierbar ist, dann koennen die partiellen Ableitungen (so sie denn existieren) in diesem Punkt nicht alle stetig sein, weil daraus die Differenzierbarkeit folgt.
Und natuerlich kann eine Funktion in einem Punkt stetig sein, ohne dass sie da differenzierbar waere.