Sven und Björn üben das Elfmeterschießen, wobei B. mit 60% Wahrscheinlichkeit ein Tor erzielt und Sven nur mit 40%. Sie vereinbaren einen Wettkampf. Die Elfmeter werden abwechselnd geschossen, wobei Sven beginnen darf und jeder insgesmt höchstens zweimal schießt. Es gewinnt derjenige, welcheer den ersten Treffer erzielt.
a) Berechnen Sie die Gewinnwahrscheinlichkeiten der beiden Spieler?
P(S) = 0.4 + (1 - 0.4)·(1 - 0.6)·0.4 = 0.496
P(B) = (1 - 0.4)·0.6 + (1 - 0.4)·(1 - 0.6)·(1 - 0.4)·0.6 = 0.4464
b) Mit welcher Wahrscheinlichkeit geht das Spiel unentschieden aus?
P(Unentschieden) = (1 - 0.4)·(1 - 0.6)·(1 - 0.4)·(1 - 0.6) = 0.0576
c) Würde Fabian anstelle von Sven spielen, so hätten beide Spieler die gleiche Gewinnchance. Welche Trefferwahrscheinlichkeit p hat Fabian?
p + (1 - p)·(1 - 0.6)·p = (1 - p)·0.6 + (1 - p)·(1 - 0.6)·(1 - p)·0.6 --> p = 3/8 = 0.375