f(x, y) = 10·x + 14·y optimieren unter der Nebenbedingung 36·x^2 + 81·y^2 = 2916
Lagrange-Funktion
L = 10·x + 14·y - k·(36·x^2 + 81·y^2 - 2916)
Partielle Ableitungen
Lx = 10 - 72·k·x = 0
x = 5/(36·k)
Ly = 14 - 162·k·y = 0
y = 7/(81·k)
Wir setzen beides in die Nebenbedingung ein
36·(5/(36·k))^2 + 81·(7/(81·k))^2 = 2916
k = ± √421/972 = ± 0.02110934622
Wir berechnen die möglichen Extrema
x1 = 5/(36·(- √421/972)) = - 135·√421/421 = - 6.579497414
y1 = 7/(81·(- √421/972)) = - 84·√421/421 = - 4.093909502
f(- √421/972, - √421/972) = - 2·√421/81 = - 0.5066243093
x2 = 5/(36·(√421/972)) = 135·√421/421 = 6.579497414
y2 = 7/(81·(√421/972)) = 84·√421/421 = 4.093909502
f(√421/972, √421/972) = 2·√421/81 = 0.5066243093