Hallo,
f(x,y)=x^2 +x^2 y -2y-y^2
fx= 2x +2xy
fy=x^2 -2 -2y
fxy=fyx= 2x
fxx= 2+2y
fyy= -2
->Hesse Matrix:
H(x,y)= \( \left(\begin{array}{cc}2 y+2 & 2 x \\ 2 x & -2\end{array}\right) \)
fx= 2x +2xy =0
fy=x^2 -2 -2y =0
-----------------------
1) 2x +2xy =0 --------->2x(1+y)=0 ----->x=0 , y=-1
2) x^2 -2 -2y =0 0 und -1 eingesetzt ------>y=-1 ; x1,2= 0
H(0,-1) = \( \begin{pmatrix} 0 & 0 \\ 0 & -2 \end{pmatrix} \)
H(0,-1) = \( \begin{pmatrix} -λ & 0 \\ 0 & -2-λ \end{pmatrix} \)
-->(-λ) (-2-λ)=0
2λ +λ^2=0
λ1=0
λ2= -2