f ( x ) = a * x^3 + b * x^2 + c * x + d
( 0 | 0 ) => d entfällt
f ( x ) = a * x^3 + b * x^2 + c * x
f ´( x ) = 3 * a * x^2 + 2 * b * x + c
f´( 0 ) = 0 => c entfällt
f ( x ) = a * x^3 + b * x^2
( 3 | 0 )
27 * a + 9 * b = 0
Stammfunktion bilden
a * x^4 / 4 + b * x^3 / 3
[ a * x^4 / 4 + b * x^3 / 3 ] 03 = 27 / 16
a * 3^4 / 4 + b * 3^3 / 3 - ( a * 0^4 / 4 + b * 0^3 / 3 ) = 27 / 16
a * 3^4 / 4 + b * 3^3 / 3 = 27 / 16
81 / 4 * a + 9 * b = 27 / 16
27 * a + 9 * b = 0
81 / 4 * a + 9 * b = 27 / 16 | abziehen
----------------------------------
27 * a - 81 / 4 * a = - 27 / 16
27 / 4 * a = -27 / 16
a = -1 / 4
27 * a + 9 * b = 0
-27 / 4 + 9 * b = 0
b = 3 / 4
f ( x ) = -1/4 * x^3 + 3/4 * x^2