\(|A -\lambda E| = \lambda^{4} - 8 \; \lambda^{3} + 14 \; \lambda^{2} + 8 \; \lambda- 15 = 0 \)
===>
\(Eigenwerte \, := \, \left\{ -1, 1, 3, 5 \right\}, DimEigenraum \, := \, \left\{ 1, 1, 1, 1 \right\} \)
\( \small \left(\begin{array}{rrrr}\lambda=&-1&\left(\begin{array}{rrrr}14&12&-12&-4\\-2&0&0&-2\\4&4&-4&-4\\4&4&-4&2\\\end{array}\right)&\left(\begin{array}{r}x1\\x2\\x3\\x4\\\end{array}\right) = 0\\\lambda=&1&\left(\begin{array}{rrrr}12&12&-12&-4\\-2&-2&0&-2\\4&4&-6&-4\\4&4&-4&0\\\end{array}\right)&\left(\begin{array}{r}x1\\x2\\x3\\x4\\\end{array}\right) = 0\\\lambda=&3&\left(\begin{array}{rrrr}10&12&-12&-4\\-2&-4&0&-2\\4&4&-8&-4\\4&4&-4&-2\\\end{array}\right)&\left(\begin{array}{r}x1\\x2\\x3\\x4\\\end{array}\right) = 0\\\lambda=&5&\left(\begin{array}{rrrr}8&12&-12&-4\\-2&-6&0&-2\\4&4&-10&-4\\4&4&-4&-4\\\end{array}\right)&\left(\begin{array}{r}x1\\x2\\x3\\x4\\\end{array}\right) = 0\\\end{array}\right)\)
===> EVs
\(\small T \, := \, \left(\begin{array}{rrrr}0&-1&1&2\\1&1&-1&-1\\1&0&\frac{-1}{2}&0\\0&0&1&1\\\end{array}\right)\)
\(D \, := \, T^{-1} \; A \; T\)