$$f(x, y) = \sqrt{3 (x^2 + y^2)}+ 1$$
$$x= r \cdot \cos \phi$$
$$y = r \cdot \sin \phi $$
$$f(r, \phi) = \sqrt{3 ((r \cdot \cos \phi)^2 + (r \cdot \sin \phi)^2)}+ 1$$
$$f(r, \phi) = \sqrt{3 r^2 \cdot (( \cos \phi)^2 + ( \sin \phi)^2)}+ 1$$
$$ ( \cos \phi)^2 + ( \sin \phi)^2= 1$$
$$f(r, \phi) = \sqrt3\cdot r + 1$$