3*3!+4*4!+...+n*n!=(n+1)!-6
für alle natürlichen Zahlen n ≥ 3
Hi,
Induktionsanfang: n=3 einsetzten, 18=18 Aussage stimmt
Induktonsvoraussetzung:
∑nk=3 k*k! = (n+1)!-6
Induktionsschritt:
∑n+1k=3 k*k! = ∑nk=3 k*k! +(n+1)*(n+1)! = (n+1)!-6 + (n+1)*(n+1)! = (n+1)!*(n+2)-6 = (n+2)!-6
Ein anderes Problem?
Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos