Ich mache mal die Aufgabe b)
sin(x) ~ 0 + x - 0x^2 - 1/6*x^3 + 0x^4 + 1/120*x^5
sin(2x) ~ 0 + 2*x - 4*0x^2 - 8*1/6*x^3 + 16*0x^4 + 32*1/120*x^5
sin(2x) ~ 2*x - 4/3*x^3 + 4/15*x^5
e^x ~ 1 + x + 1/2*x^2 + 1/6*x^3 + 1/24*x^4 + 1/120*x^5
e^{3x} ~ 1 + 3*x + 9*1/2*x^2 + 27*1/6*x^3 + 81*1/24*x^4 + 243*1/120*x^5
e^{3x} ~ 1 + 3*x + 9/2*x^2 + 9/2*x^3 + 27/8*x^4 + 81/40*x^5
sin(2x) * e^{3x} ~ (2*x - 4/3*x^3 + 4/15*x^5)·(1 + 3*x + 9/2*x^2 + 9/2*x^3 + 27/8*x^4 + 81/40*x^5)
sin(2x) * e^{3x} ~ 2*x + 6*x^2 + 23/3*x^3 + 5*x^4 + 61/60*x^5 + ...
t(x) = 2*x + 6*x^2 + 23/3*x^3 + 5*x^4 + 61/60*x^5
tIV(0) = 2*3*4*5 = 120