\(f(x) = x^5 + x^3 - 2x\)
\( x^5 + x^3 - 2x=0\)
\( x(x^4+x^2 - 2)=0\)
\( x_1=0\)
\(x^4+x^2 - 2=0\)
\(x^4+1x^2 =2\)
\(x^4+1x^2+(\frac{1}{2} )^2=2+(\frac{1}{2} )^2\)
1.Binom:
\((x^2+\frac{1}{2} )^2=2,25|±\sqrt{~~}\)
1.)
\(x^2+\frac{1}{2} =1,5\)
\(x^2 =-0,5+1,5=1|±\sqrt{~~}\)
\(x_2 =1\)
\(x_3 =-1\)
Das sind die Lösungen ∈ ℝ
2.)
\(x^2+\frac{1}{2} =-1,5\)
\(x^2 =-2\)
\(x^2 =2i^2|±\sqrt{~~}\)
\(x_4 =i\sqrt{2}\)
\(x_5=-i\sqrt{2}\)
Das sind die Lösungen ∉ ℝ