Ich lese gerade Spivaks Comrehensive Introduction to Differential Geometry und habe gleich eine Frage zum Anfang. Er beschränkt sich bei der Definition einer Mannigfaltigkeit zunächst auf metrische Räume. Ein solcher ist eine Mannigfaltigkeit, wenn er lokal homöomorph zu (einem) R^n ist, das heißt wenn jeder Punkt eine Umgebung besitzt, welche homöomorph zu (einem) R^n.
Jetzt sagt er, dass eine offene Teilmenge A einer Mannigfaltikeit M wieder eine Mannigfaltigkeit ist.
Ich hätte gesagt: Sei $$x\in A,$$ dann gibt es eine offene Menge $$U\subset M,$$ die x enthält und ein $$n\in\mathbb N$$ sowie einen Homöomorphismus $$\phi:U\rightarrow \mathbb R^n.$$ Dann ist der Durchschnitt $$B:=U\cap A$$ offen, also eine Umgebung von x und die Einschränkung von Φ auf B ist ein Homöomorphismus. Allerdings nicht mehr zwischen B und R^n (wie es nach dieser Definition einer Mannigfaltigkeit notwendig wäre) sondern zwischen B und einer (offenen) Teilmenge des R^n. Jetzt sind offene Teilmengen von R^n soweit ich weiß nicht notwendigerweise homöomorph zu R^n?
PS: ich kann keine passenden Stichworte auswählen.