Ist die Funktion f auf einem Intervall ]-∞,b] und existiert der Grenzwert limk → -∞∫kb f(x) dx,dann definiert man diesen Grenzwert als uneigentliches Integral von f über ]-∞,b] und schreibt hierfür ∫-∞b f(x) dx.
Stetig heißt, alle Bedingungen der Stetigkeit sind erfüllt. Es wäre absurd, eine Funktion als stetig zu bezeichnen, die nicht alle dafür notwendigen Bedingungen erfüllt.
Die Stetigkeit kann man aus der Existenz des uneigentlichen Integrals ableiten. Sie ist nämlich laut Definition Voraussetzung dafür, das Wort "uneigentliches Integral" überhaupt in den Mund nehmen zu dürfen. Eine interessantere Frage ist, ob Stetigkeit überhaupt mit in die Voraussetzung aufgenommen werden soll. Meiner Meinung nach ist das nicht notwendig.