Denke dir drei Punkte im Koordinatensystem. Einen auf der y.Achse, einen auf der Positiven und einen auf der negativen x-Achse. Die Punkte sollen ein spitzwinkliges Dreieck bilden. Welches einbeschriebene Rechteck mit der Grundseite auf der x-Achse hat nun den größten Flächeninhalt.
Ich würde mal grob vermuten, das Rechteck ist halb so hoch wie das Dreieck und die Grundseite ist auch genau halb so lang wie die Grundseite vom Dreieck. Damit hat das Rechteck einen Flächeninhalt der genau halb so groß ist, wie der Flächeninhalt des Dreiecks.
Kannst du das jetzt mal zeigen?
Probier das mal zunächst für das Rechtwinklige Dreieck das von der y-Achse, der positiven x-Achse und einer Dreiecksseite gebildet wird.
Was für Abmessungen hätte dort ein Rechteck mit größtem Flächeninhalt.