folgende Aufgabe ist gegeben:
Gegeben ist die Funktion \( f(x, y)=x^{2}-y+2 . \) Diese beschreibe eine Landschaft, so dass die Höhe in Metern über dem Meeresspiegel gerade durch \( h=f(x, y) \) gegeben ist. Sie selbst stehen im Koordinatenursprung \( (x, y)=(0,0) . \) Die \( x \) -Achse verlaufe von Westen nach Osten, die \( y \) -Achse von Süden nach Norden.
(a) Wie hoch iber dem Meeresspiegel stehen Sie?
(b) Skizzieren Sie die Höhenlinien \( f(x, y)=c \) für \( c=-1, c=0 \) und \( c=1 \)
(c) In welche Himmelsrichtung würde ein Ball rollen, den Sie dort, wo Sie stehen, auf den Boden
legen?
(d) Bearbeiten Sie die Teilaufgaben (a) bis (c) auch für die Funktionen \( g(x, y)=y-x \) und
$$ k(x, y)=2 x \mathrm{e}^{-y} $$
Lösungen:
\( f(x, y)=x^{2}-y+2, \quad h=f(x, y), \quad(x, y)=(0,0) \)
\( f(0,0)=0^{2}-0+2=2 \Rightarrow 2 m \) ü. \( N N \)
\( x^{2}-y+2=c \)
\( y=x^{2}-c+2 \)
\( y(-1)=x^{2}-(-1)+2=x^{2}+3 \)
\( y(0)=x^{2}-(0)+2=x^{2}+2 \)
\( y(1)=x^{2}-(1)+2=x^{2}+1 \)
Der Ball rollt nach Westen.
\( g(x, y)=y-x, \quad h=g(x, y), \quad(x, y)=(0,0) \)
\( g(0,0)=0-0=0 \Rightarrow 0 m \) i. \( N N \)
\( y-x=c \)
\( y=-x-c \)
\( y(-1)=-x-(-1)=-x+1 \)
\( y(0)=-x-(0)=-x \)
\( y(1)=-x-(1)=-x-1 \)
Der Ball rollt nach Nordosten.
\( k(x, y)=2 x \cdot e^{-y}, \quad h=k(x, y), \quad(x, y)=(0,0) \)
\( k(0,0)=2 \cdot 0 \cdot e^{-(0)}=0 \Rightarrow O m \) ii. \( N N \)
\( 2 x \cdot e^{-y}=c \)
\( y=\log \left(\frac{2 x}{c}\right) \)
\( y(-1)=\log \left(\frac{2 x}{-1}\right)=\log (-2 x) \Rightarrow \mathfrak{S} \) (Komplexe Zahlen)
\( y(0)=\log \left(\frac{2 x}{0}\right) \Rightarrow \) nicht definiert
\( y(1)=\log \left(\frac{2 x}{1}\right)=\log (2 x) \)
Der Ball rollt nach Osten.
Skizzen:
Sind meine Ergebnisse richtig?
Beste Grüße,
Asterix