s = 5
smin = 5 * (1 - 0.01) = 4.95
smax = 5 * (1 + 0.01) = 5.05
t = 6
tmin = 6 * (1 - 0.01) = 5.94
tmin = 6 * (1 + 0.01) = 6.06
g(s, t) = s^2 * e^{t³+1}
Ich setze einfach mal in die Funktion die verschiedenen Werte ein.
g() | tmin | t | tmax |
smin | 9,470*10^91 | 5.788*10^94 | 4.027*10^97 |
s | 9.662*10^91 | 5.905*10^94 | 4.109*10^97 |
smax | 9.856*10^91 | 6.024*10^94 | 4.191*10^97 |
Absoluter Fehler
9.470*10^91 - 5.905*10^94 = - 5.89553·10^94
4.191*10^97 - 5.905*10^94 = 4.185095·10^97
Relativer Fehler
9.470*10^91 / (5.905*10^94) - 1 = -0.9983962743 = -99.84%
4.191*10^97 / (5.905*10^94) - 1 = 708.7375105 = 70874%