cos(x)+sin(x) = 1/2
±√(1 - sin2(x) ) = 1/2 - sin(x)
setze z = sin(x)
±√(1 - z2) = 1/2 - z
1-z2 = 1/4 - z + z2
2z2 - z - 3/4 = 0
z2 - 1/2 z - 3/8 = 0
z1,2 = 1/4 ± √(1/16 + 6/16) = 1/4 ± 1/4 * √7 (Probe stimmt!)
→ sin(x) = 1/4 ± 1/4 * √7
→ cos(x) = 1/2 - (1/4 ± 1/4 * √7 ) = 1/4 -(+) 1/4 * √7
Also: sin(x) = 1/4 + 1/4 * √7 und cos(x) = 1/4 - 1/4 * √7
oder: sin(x) = 1/4 - 1/4 * √7 und cos(x) = 1/4 + 1/4 * √7
→ cos3(x) + sin3(x) = (1/4 - 1/4 * √7)3 + (1/4 + 1/4 * √7)3 = 11/16
Gruß Wolfgang