0 Daumen
1,6k Aufrufe

Berechnen Sie alle partiellen Ableitungen erster und zweiter  Ordnung der folgenden Funktion:

f(x, y, z) = ln(√(x2 + y2 + z2))

f(x, y) = (x + y)/(x2 + y2)

Avatar von

1 Antwort

+1 Daumen
f(x, y, z) = ln(√(x^2 + y^2 + z^2))

df/dx = x/(x^2 + y^2 + z^2)
df/dy = y/(x^2 + y^2 + z^2)
df/dz = z/(x^2 + y^2 + z^2)

d^{2}f/dxdx = (- x^2 + y^2 + z^2)/(x^2 + y^2 + z^2)^2
d^{2}f/dxdy = - 2·x·y/(x^2 + y^2 + z^2)^2
d^{2}f/dxdz = - 2·x·z/(x^2 + y^2 + z^2)^2

d^{2}f/dydx = - 2·x·y/(x^2 + y^2 + z^2)^2
d^{2}f/dydy = (x^2 - y^2 + z^2)/(x^2 + y^2 + z^2)^2
d^{2}f/dydz = - 2·y·z/(x^2 + y^2 + z^2)^2

d^{2}f/dzdx = - 2·x·z/(x^2 + y^2 + z^2)^2
d^{2}f/dzdy = - 2·y·z/(x^2 + y^2 + z^2)^2
d^{2}f/dzdz = (x^2 + y^2 - z^2)/(x^2 + y^2 + z^2)^2
Avatar von 489 k 🚀
f(x, y) = (x + y)/(x^2 + y^2)

df/dx = (- x^2 - 2·x·y + y^2)/(x^2 + y^2)^2
df/dy = (x^2 - 2·x·y - y^2)/(x^2 + y^2)^2

d^{2}f/dxdx = 2·(x^3 + 3·x^2·y - 3·x·y^2 - y^3)/(x^2 + y^2)^3
d^{2}f/dxdy = 2·(- x^3 + 3·x^2·y + 3·x·y^2 - y^3)/(x^2 + y^2)^3

d^{2}f/dydx = 2·(- x^3 + 3·x^2·y + 3·x·y^2 - y^3)/(x^2 + y^2)^3
d^{2}f/dydy = 2·(- x^3 - 3·x^2·y + 3·x·y^2 + y^3)/(x^2 + y^2)^3

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community