f(x, y, z) = ln(√(x^2 + y^2 + z^2))
df/dx = x/(x^2 + y^2 + z^2)
df/dy = y/(x^2 + y^2 + z^2)
df/dz = z/(x^2 + y^2 + z^2)
d^{2}f/dxdx = (- x^2 + y^2 + z^2)/(x^2 + y^2 + z^2)^2
d^{2}f/dxdy = - 2·x·y/(x^2 + y^2 + z^2)^2
d^{2}f/dxdz = - 2·x·z/(x^2 + y^2 + z^2)^2
d^{2}f/dydx = - 2·x·y/(x^2 + y^2 + z^2)^2
d^{2}f/dydy = (x^2 - y^2 + z^2)/(x^2 + y^2 + z^2)^2
d^{2}f/dydz = - 2·y·z/(x^2 + y^2 + z^2)^2
d^{2}f/dzdx = - 2·x·z/(x^2 + y^2 + z^2)^2
d^{2}f/dzdy = - 2·y·z/(x^2 + y^2 + z^2)^2
d^{2}f/dzdz = (x^2 + y^2 - z^2)/(x^2 + y^2 + z^2)^2