lim x->1 (1/ln(x))+(1/(1-x))
= lim x->1 ((1-x)+ln(x))/ (ln(x) * (1-x)) | Hospital
= lim x->1 (-1 + 1/x) / ( (1/x)*(1-x) + ln(x)* (-1))
= lim x->1 (-1 + x^{-1}) / ( (1/x - 1 - ln(x)) | Hospital
= lim x->1 ( 0 -x^{-2} ) / (-x^{-2} - 0 - 1/x) | x=1 einsetzen
= (- 1^{-2} /( -1 ^{-2} - 1 )
= -1 / (-2)
= 1/2