Ich hätte zu einer Aufgabe mal eine Frage. Und zwar habe ich es bis jetzt immer so beigebracht bekommen, dass man die Basis einer Matrix durch die Zeilenstufenform bekommt.
So, jetzt sollte hierfür die Basis ausgerechnet werden:
\( U=\left\langle\left(\begin{array}{l}{1} \\ {1} \\ {0} \\ {0}\end{array}\right),\left(\begin{array}{l}{1} \\ {0} \\ {1} \\ {0}\end{array}\right),\left(\begin{array}{l}{1} \\ {0} \\ {0} \\ {1}\end{array}\right),\left(\begin{array}{l}{0} \\ {1} \\ {1} \\ {0}\end{array}\right),\left(\begin{array}{l}{0} \\ {1} \\ {0} \\ {1}\end{array}\right),\left(\begin{array}{l}{0} \\ {0} \\ {1} \\ {1}\end{array}\right)\right\rangle \subset \mathbb{R}^{4} \)
ich verstehe allerdings nicht, wie in der Lösung jetzt vorgegangen wurde:
a) Wir schreiben die sechs Vektoren als Zeilen in eine Matrix A und wenden auf diese den Gauß-Algorithmus an, um eine Zeilenstufenform zu erhalten. Die Nichtnullzeilen dieser Zeilenstufenform bilden dann eine Basis von \( U \) und ihre Anzahl (rang(A)) ist demnach die Dimension des Untervektorraumes.
\( \left(\begin{array}{llll}{1} & {1} & {0} & {0} \\ {1} & {0} & {1} & {0} \\ {1} & {0} & {0} & {1} \\ {0} & {1} & {1} & {0} \\ {0} & {1} & {0} & {1} \\ {0} & {0} & {1} & {1}\end{array}\right) \quad \rightarrow \quad\left(\begin{array}{cccc}{1} & {0} & {0} & {1} \\ {0} & {1} & {0} & {-1} \\ {0} & {0} & {1} & {-1} \\ {0} & {1} & {1} & {0} \\ {0} & {1} & {0} & {1} \\ {0} & {0} & {1} & {1}\end{array}\right) \quad \rightarrow \quad\left(\begin{array}{cccc}{1} & {0} & {0} & {1} \\ {0} & {1} & {0} & {1} \\ {0} & {0} & {0} & {-2} \\ {0} & {0} & {1} & {-1} \\ {0} & {0} & {1} & {-1} \\ {0} & {0} & {1} & {1}\end{array}\right) \)
\( \rightarrow\left(\begin{array}{cccc}{1} & {0} & {0} & {0} \\ {0} & {1} & {0} & {0} \\ {0} & {0} & {0} & {1} \\ {0} & {0} & {1} & {0} \\ {0} & {0} & {1} & {0} \\ {0} & {0} & {1} & {0}\end{array}\right) \quad \rightarrow \quad\left(\begin{array}{cccc}{1} & {0} & {0} & {0} \\ {0} & {1} & {0} & {0} \\ {0} & {0} & {1} & {0} \\ {0} & {0} & {0} & {1} \\ {0} & {0} & {0} & {0} \\ {0} & {0} & {0} & {0}\end{array}\right) \)
(Hier wurde im ersten Schritt die dritte Zeile nach oben geschrieben und von der ersten und zweiten subtrahiert; im zweiten Schritt wurde die fünfte Zeile als nun zweite gewählt und von der zweiten und vierten subtrahiert; im dritten Schritt wurde die dritte Zeile mit \( -\frac{1}{2} \) multipliziert und dann damit die ganze vierte Spalte ausgeräumt.) Als Exgebnis erhalten wir als Basis von \( \bar{U} \)
$$ \left\{\left(\begin{array}{l} {1} \\ {0} \\ {0} \\ {0} \end{array}\right),\left(\begin{array}{l} {0} \\ {1} \\ {0} \\ {0} \end{array}\right),\left(\begin{array}{l} {0} \\ {0} \\ {1} \\ {0} \end{array}\right),\left(\begin{array}{l} {0} \\ {0} \\ {0} \\ {1} \end{array}\right)\right\} $$
die Standardbasis des \( \mathbb{R}^{4}, \) und die Dimension \( \operatorname{dim}(U)=4 \) (also \( U=\mathbb{R}^{4} \) ).
Gibt es nun einen bestimmten Grund, weswegen man sich dazu entschieden hat die sechs Vektoren als Zeilen aufzuschreiben und dann davon die Zeilenstufenform zu erhalten?
Freue mich über eure Antworten!