e^{1/z}=e^ (1/(x+iy))=exp((x-iy)/(x2+y2))=exp(x/(x^2+y^2))*exp(-iy/(x^2+y^2))
=exp(x/(x^2+y^2))*[cos(-y/(x^2+y^2))+i*sin(-y/(x^2+y^2))]
=exp(x/(x^2+y^2))*[cos(y/(x^2+y^2))-i*sin(y/(x^2+y^2))]
u(x,y)=exp(x/(x^2+y^2))*cos(y/(x^2+y^2))
v(x,y)=exp(x/(x^2+y^2))*sin(y/(x^2+y^2))