Ich soll bei folgenden Funktionen entscheiden ob die durch z=f(x,y) und z=g(x,y) definierte Fläche im R^3 einander an der Stelle (x,y)=(1,1) berühren oder ob sie eine gemeinsame Schnittkurve in dieser Umgebung haben.Die Funktionen lauten f(x,y)=2x^2-2y, g(x,y)=4x-y^2Dabei gilt f(1,1)=g(1,1)=3Wenn ich laut Wikipedia die Anleitung benutze und die beiden Gleichungen nach x,y,z partiell ableite und von den somit gewonnen Vektoren das Kreuzprodukt bilde, kommt für den Punkt (1,1) der Richtungsvektor (0,0,0) heraus. Heißt das, dass es keine Schnittkurve gibt?Als hinweiß steht bei den Beispiel man soll die Funktion f(x,y)-g(x,y) betrachten.Danke schon mal für die Hilfe!