Integrationsgrenze für bestimmtes Integral so dass Integral (e^3x + e^x) = 100 ?
It is given that \( \int \limits_{m}^{4 m}\left(e^{3 x}+e^{x}\right) d x=100 \), where \( m \) is a positive constant.
i) Find an equation for \( m \) of the form \( m=\frac{1}{u} \ln \left(r+s e^{m}-t e^{s m}\right) \)
ii) Use an iterative process, based on the equation in part (i), to find the value of \( m \) correct to 4 decimal places. Use a starting value of \( 0.4 \).
Könnte hier bitte jemand meine Lösung (m = 0,47223) überprüfen?