Muss man nicht. Das wäre aber ein sehr universeller Weg. So kann man den Krümmungsradius an jeder beliebigen Stelle bestimmen.
Wenn du in der Analysis "Krümmungen" mit der zweiten Ableitung bestimmst, dann solltest du wissen, das das erstmal nichts mit dem Krümmungsradius zu tun hat. So hat z.B. eine Parabel eine Konstante 2. Ableitung. Die Krümmung ist allerdings rein optisch für uns nicht überall gleich.
Daher also Aufpassen.
Ich kann mich daran erinnern das wir damals in der Schule mal eine Kreisgleichung aufstellen sollten. In meinem damaligen jugendlichen Leichtsinn hatte ich mir gedacht, dass ein Kreis ja überall die gleiche Krümmung hat und unsere Lehrerin gesagt hat die 2. Ableitung steht für die Krümmung. Also habe ich eine konstante 2. Ableitung genommen und zweimal integriert aber war ganz enttäuscht, dass doch nur eine Parabel heraus kam und kein Kreis :(
Zum glück hatte ich mich dann damals noch an die Definition des Kreises erinnert die besagt, das ein Kreis die Menge aller Punkte ist die zum Kreismittelpunkt den selben Abstand haben. Darüber hab ich es dann hinbekommen eine Kreisgleichung zu basteln.
Allerdings fehlte mir damals ein Internet, wo ich mich hätte gut informieren können was jetzt eigentlich die "wirkliche Krümmung" (damals fehlte mir der Begriff Krümmungsradius) ist und wie ich diese Berechnen kann. Das habe ich daher erst sehr viel später gelernt.
Die heutigen Schüler haben das sehr viel einfacher. Es gibt Google, es gibt Wikipedia und sehr gute Matheforen.
Manchmal wundert es mich, dass das Wissen der Schüler offenbar nicht mitgewachsen ist sondern eher gleichgeblieben ist, wenn nicht teilweise sogar gesunken ist :(