g(x) = x^3 - 2·x^2
g'(x) = lim (h --> 0) (g(x + h) - g(x)) / h
g'(x) = lim (h --> 0) (((x + h)^3 - 2·(x + h)^2) - (x^3 - 2·x^2)) / h
g'(x) = lim (h --> 0) ((x^3 + 3·x^2·h + 3·x·h^2 + h^3 - 2·(x^2 + 2·x·h + h^2)) - (x^3 - 2·x^2)) / h
g'(x) = lim (h --> 0) (x^3 + 3·x^2·h + 3·x·h^2 + h^3 - 2·x^2 - 4·x·h - 2·h^2 - x^3 + 2·x^2) / h
g'(x) = lim (h --> 0) (3·x^2·h + 3·x·h^2 + h^3 - 4·x·h - 2·h^2) / h
g'(x) = lim (h --> 0) (3·x^2 + 3·x·h + h^2 - 4·x - 2·h) = 3·x^2 - 4·x