0 Daumen
580 Aufrufe

Bestimmen sie lim x→ ∞ [( x2-6x+7)(sin(x)+2)]  / (5x3+3)

Avatar von

Bestimme den Limes von x --> Unendlich von ((x^2-6*x+7)*(sin(x)+2))/(5*x^3+3)

3 Antworten

0 Daumen

lim (x-->∞) (x^2 - 6·x + 7)·(SIN(x) + 2)/(5·x^3 + 3)

lim (x-->∞) (x^2 - 6·x + 7) / (5·x^3 + 3) * lim (x-->∞) (SIN(x) + 2)

Schätze SIN(x) + 2 nach oben mit 3 ab.

3 * lim (x-->∞) (x^2 - 6·x + 7)/(5·x^3 + 3)

Jetzt sollte klar sein, dass der Wert gegen 0 geht oder?

Avatar von 489 k 🚀
0 Daumen
0 Daumen

Ich hab mal Klammern um 5x3+3 gesetzt. Schreib deinen Bruch mal so: [( x2-6x+7) / (5x3+3)]· (sin(x)+2). Jetzt geht der erste Faktor gegen Null und der zweite Faktor bleibt zwischen 1 und 3. Also ist der Grenzwert 0.

Avatar von 123 k 🚀

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community