A = [3, -2, 0]
B = [4, 6, 3]
C = [6, 2, -1]
S = [5, 1, 13]
AB = [4, 6, 3] - [3, -2, 0] = [1, 8, 3]
AC = [6, 2, -1] - [3, -2, 0] = [3, 4, -1]
n = [1, 8, 3] x [3, 4, -1] = [-20, 10, -20] = -10 * [2, -1, 2]
E: x * [2, -1, 2] = [3, -2, 0] * [2, -1, 2]
E: 2x - y + 2z = 8
h: x = [5, 1, 13] + r * [2, -1, 2] = [2·r + 5, 1 - r, 2·r + 13]
Schnittpunkt Höhe h mit Ebene E
2(2·r + 5) - (1 - r) + 2(2·r + 13) = 8
r = -3
Fußpunkt und Höhe berechnen
F = [2·(-3) + 5, 1 - (-3), 2·(-3) + 13] = [-1, 4, 7]
|FS| = |[5, 1, 13] - [-1, 4, 7]| = |[6, -3, 6]| = 9
Nun zum Volumen
AS = [5, 1, 13] - [3, -2, 0] = [2, 3, 13]
V = |1/6 * [-20, 10, -20] * [2, 3, 13]| = |-45| = 45