Cauchyscher Integralsatz: f: G → ℂ, G ∈ ℂ einfach zusammenhängend, holomorph. γ ⊂ G stückweise glatt geschlossene Kurve
⇒ ∫γ f(z) dz = 0.
Cauchysche Integralformel: f: G → ℂ, G ∈ ℂ einfach zusammenhängende Gebiet, holomorph. γ ⊂ G stückweise glatt Jordan-Kurve (einfach durchlaufen), z0 ∈ G, z0 innerhalb γ
⇒ f(k)(z)/k! = 1/2πi ∫γ f(ζ)/(ζ-z)k+1 dζ, k ∈ ℕ ∪ {0}