16 - (4 - 1/n^2)^2 = (8·n^2 - 1)/n^4
4 - (2 + 1/n^2)^2 = - (4·n^2 + 1)/n^4
Damit ist
(16 - (4 - 1/n^2)^2) / (4 - (2 + 1/n^2)^2)
= (8·n^2 - 1)/n^4 / (- (4·n^2 + 1)/n^4)
= (8·n^2 - 1)/n^4 * (- n^4/(4·n^2 + 1))
= - (8·n^2 - 1)/(4·n^2 + 1)
= - (8 - 1/n^2)/(4 + 1/n^2)
für n --> ∞
= -2