Hallo,
zu a) siehe hier.
zu b): Es gilt für alle \(x\in[1,\infty):\,\,f_n(x) \overset{n\to\infty}{\to} e^{-x/2}\), wobei
\(f_n:\,[1,\infty) \to \mathbb{R}, \,f_n(x) = (1- \frac{x}{2n} )^n\cdot \mathbb{1}_{[1,n]}(x), \,n\in\mathbb{N} \).
Weiter gilt für alle \(n\in\mathbb{N}\): \(|f_n(x)| = |(1- \frac{x}{2n} )^n\cdot \mathbb{1}_{[1,n]}(x)| = (1- \frac{x}{2n} )^n\cdot \mathbb{1}_{[1,n]}(x)\leq e^{-x/2}\) für alle \(x\in[1,\infty)\). Da \(\int_{[1,\infty)}e^{-x/2}d\lambda^1(x) = 2/\sqrt{e}\ < \infty\) folgt mit dem Satz von Lebesgue
\(\lim_{n\to\infty}\int_{[1,\infty)}f_n(x)1_{[1,n]}d\lambda^1(x) = \int_{[1,\infty)}e^{-x/2}d\lambda^1(x) = 2/\sqrt{e} \)