F(x, y) = y^2 + (x·y + 1)^3 = 0
Fx'(x, y) = 3·x^2·y^3 + 6·x·y^2 + 3·y
Fy'(x, y) = 3·x^3·y^2 + 6·x^2·y + 3·x + 2·y
y'(x, y) = -Fx'(x, y) / Fy'(x, y)
y'(x, y) = -(3·x^2·y^3 + 6·x·y^2 + 3·y) / (3·x^3·y^2 + 6·x^2·y + 3·x + 2·y)
y'(2, -1) = -(3·2^2·(-1)^3 + 6·2·(-1)^2 + 3·(-1)) / (3·2^3·(-1)^2 + 6·2^2·(-1) + 3·2 + 2·(-1)) = 0.75
y = 0.75·(x - 2) - 1