\(f(x)=x^2+px+q\) \(x_1= \sqrt{13} +10\) \(x_2= -\sqrt{13} +10\)
\(x^2+px+q=0\)
\(x^2+px+(\frac{p}{2})^2=-q+(\frac{p}{2})^2\)
\((x+\frac{p}{2})^2=-q+(\frac{p}{2})^2 |±\sqrt{~~}\)
1.)
\( x+\frac{p}{2}=\sqrt{-q+(\frac{p}{2})^2 }\)
\( x_1=-\frac{p}{2}+\sqrt{-q+(\frac{p}{2})^2 }\)
\(x_1= 10+\sqrt{13}\)⇒
\( 10=-\frac{p}{2}\)
\( p=\red{-}20\)
\( \sqrt{13}=\sqrt{-q+(\frac{\red{-}20}{2})^2 }\)
\( \sqrt{13}=\sqrt{-q+100 }\)
\( 13=-q+100 \)
\( q=87 \)
2.)
\( x+\frac{p}{2}=-\sqrt{-q+(\frac{p}{2})^2 }\)
\( x_2=-\frac{p}{2}-\sqrt{-q+(\frac{p}{2})^2 }\)
\( 10=-\frac{p}{2}\)
\(p=-20\)
\( \sqrt{13}=-\sqrt{-q+(\frac{\red{-}20}{2})^2 }\)
\( q= 87\)
Kann nicht aufgelöst werden, da \( \sqrt{13} \) nicht negativ werden kann.