0 Daumen
1,3k Aufrufe

divergiert die exponential-Funktion (Summenzeichen a^n/n! ) oder  konvergiert sie ? 

:)

Avatar von

1 Antwort

0 Daumen
Von den Quotienten-Kriterium für Konvergenz haben wir dass wenn $$\lim_{n\rightarrow \infty}\left |\frac{x_{n+1}}{x_n}\right |<1$$ dann konvegiert die Reihe $$\sum_{n=1}^{\infty}x_n$$ Für $$x_n=\frac{a^n}{n!}$$ haben wir folgendes: $$\frac{x_{n+1}}{x_n}=\frac{\frac{a^{n+1}}{(n+1)!}}{\frac{a^n}{n!}}=\frac{n!a^{n+1}}{(n+1)!a^n}=\frac{n!a^na}{n!(n+1)a^n}=\frac{a}{n+1}$$ Wir haben dass $$\lim_{n\rightarrow \infty}\left |\frac{x_{n+1}}{x_n}\right |=\lim_{n\rightarrow \infty}\left |\frac{a}{n+1}\right |=0<1$$ davon folgt es dass die Reihe konvegiert. 
Avatar von 6,9 k

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community