Beweisidee, konvergiert fn bei n → ∞ gleichmäßig auf R gegen Grenzfunktion f : R → R, so… bitte um Kontrolle(neuer Beweis)
bitte auch diesen Beweis kontrollieren. Er sollte eigentlich korrekt sein :-) hab mich beim letzten Mal aber auch geirrt...
Ist (fn)n∈N eine Folge von Funktionen fn : R → R, die alle an
einer Stelle a ∈ R stetig sind, und konvergiert fn bei n → ∞ gleichmäßig auf R gegen eine Grenzfunktion f : R → R, so ist f an der Stelle a stetig.
Beweisversuch: Wegen der Stetigkeit der fn an der Stelle a gibt es zu jedem ε > 0 ein δ > 0, so dass fur alle x ∈ ]a−δ, a+δ[ gilt: −ε< fn(−fn(a) <ε/2.
Durch Grenzubergang n → ∞ ergibt sich für x ∈ ]a−δ, a+δ[ dann auch −ε/2 ≤ f(x)−f(a) ≤ε/2
(wobei berucksichtigt wurde, dass aus den strikten Ungleichungen beim Grenzubergang schwache werden). Insbesondere gilt damit
|f(x)−f(a)| < ε fur alle x ∈ ]a−δ, a+δ[, und wegen der Beliebigkeit von ε > 0 ist f somit an der Stelle a stetig.