Eine ganzrationale Funktion 5. Grades sieht so aus
$$f(x)=a_5 x^5 + a_4x^4 + a_3x^3 + a_2x^2 + a_1x + a_0$$
Das sind 6 Unbekannte \(a_0\) bis \(a_5\). Die ersten beiden Ableitungen sind
$$f \prime(x)=5a_5 x^4 + 4a_4x^3 + 3a_3x^2 + 2a_2x + a_1$$
$$f \prime \prime(x)=20a_5 x^3 + 12a_4x^2 + 6a_3x + 2a_2$$
Es sind zwei Wendepunkte der Funktion - in \(B\) und \(C\) - gegeben. Dort ist jeweils der Funktionswert, die Steigung über die Steigung der Geraden gegeben und aus der Tatsache, dass dort ein Wendepunkt ist, folgt dass die 2.Ableitung an diesen Stellen =0 sein muss. Das macht 6 Bedingungen für 6 Unbekannte. Als LSG geschrieben
$$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 2 & 0 & 0\\ 5^5 & 5^4 & 5^3 & 5^2 & 5 & 1\\ 5\cdot 5^4 & 4\cdot 5^3 & 3\cdot 5^2 & 2 \cdot 5 & 1 & 0\\ 20 \cdot 5^3 & 12\cdot 5^2 & 6 \cdot 5 & 2 & 0 & 0\end{pmatrix} \cdot \begin{pmatrix} a_5\\ a_4 \\ a_3\\ a_2\\ a_1 \\ a_0 \end{pmatrix}= \begin{pmatrix} 0\\ +0,5 \\ 0\\ 2,5\\ -1 \\ 0 \end{pmatrix}$$
die ersten drei Zeilen beschreiben die Bedingungen am Punkt \(B\) \(x=0\)und die weiteren die am Punkt \(C\) \(x=5\). Jeweils in der Reihenfolge \(f(x)\), \(f\prime(x)\) und \(f\prime \prime (x)\).
Gruß Werner