c) 2^2x - 3*2^{x+1} = -8,
(2^x)^2 - 3*2*2^x + 8 = 0
(2^x)^2 - 6"3^x + 8 = 0 | faktorisieren. -2*(-4) = 8 und -2 + (-4) = -6
(2^x - 4)(2^x - 2) = 0
Lösungen:
2^x1 -4 = 0 ==>2^x1 = 4 ==> x1 = 2 , denn 2^2 = 4
oder
2^x2 = 2 ==> x2 = 1 , denn 2^1 = 2
d) 3*9^{-x} + 9^x = 4 | *9^x
3 + (9^x)^2 = 4*9^x
(9^x)^2 - 4*9^x + 3 = 0 | faktorisieren (-1)*(-3) = 3 und -1 + (-3) = -4
(9^x - 3)(9^x - 1) = 0
Lösungen:
9^x1 = 3 ==> x1 = 1/2, denn √(9) = 3
9^x2 = 1 ==> x2 = 0, denn 9^0 = 1