cos hat seine Extrempunkte bei o , pi, 2pi 3pi etc und natürlich auch
-pi -2pi -3pi etc. Allgemein n*pi mit n aus Z.
Also hat deine Funktion einen Extrempunkt in [ 0 ; 4 ] wenn
1/2 x+π/4 = n*pi ist
1/2 x = ( n-0,25) * pi
x = ( 2n-0,5) * pi
und ( 2n-0,5) * pi ist in [ 0 ; 4 ] wenn
0 ≤ ( 2n-0,5) * pi ≤ 4 und weil pi > 3 ist
0 ≤ 2n-0,5 ≤ 4 / pi < 1,27
0,5 ≤ 2n < 1,77
0,25 ≤ n < 0,885
und weil es zwischen 0,25 und 0,885 keine
ganze Zahl gibt, hat f in [ 0 ; 4] keine Extrema.
Schau:
~plot~ 4 cos(1/2* x+π/4)-2*sqrt(2);[[-1|5|-8|2]] ~plot~