∫ SIN(x)^3 dx = ∫ SIN(x)·SIN(x)^2 dx
∫ SIN(x)^3 dx = -COS(x)·SIN(x)^2 - ∫ -COS(x)·2·SIN(x)·COS(x) dx
∫ SIN(x)^3 dx = -SIN(x)^2·COS(x) + ∫ 2·SIN(x)·COS(x)^2 dx
Wir kümmern uns zunächst um das neu entstandene Integral
∫ 2·SIN(x)·COS(x)^2 dx = 2·(-COS(x))·COS(x)^2 - ∫ 2·(-COS(x))·2·COS(x)·(-SIN(x)) dx
∫ 2·SIN(x)·COS(x)^2 dx = -2·COS(x)^3 - ∫ 4·SIN(x)·COS(x)^2 dx
∫ 2·SIN(x)·COS(x)^2 dx = -2·COS(x)^3 - 2·∫ 2·SIN(x)·COS(x)^2 dx
3·∫ 2·SIN(x)·COS(x)^2 dx = -2·COS(x)^3
∫ 2·SIN(x)·COS(x)^2 dx = -2/3·COS(x)^3
Jetzt betrachten wir erneut das Ausgangsintegral
∫ SIN(x)^3 dx = -SIN(x)^2·COS(x) + ∫ 2·SIN(x)·COS(x)^2 dx
∫ SIN(x)^3 dx = -SIN(x)^2·COS(x) - 2/3·COS(x)^3
∫ SIN(x)^3 dx = -COS(x)·(SIN(x)^2 + 2/3·COS(x)^2)
∫ SIN(x)^3 dx = -COS(x)·(1/3·SIN(x)^2 + 2/3·SIN(x)^2 + 2/3·COS(x)^2)
∫ SIN(x)^3 dx = -COS(x)·(1/3·SIN(x)^2 + 2/3·(SIN(x)^2 + COS(x)^2))
∫ SIN(x)^3 dx = -COS(x)·(1/3·SIN(x)^2 + 2/3)
∫ SIN(x)^3 dx = -1/3·COS(x)·(SIN(x)^2 + 2)