Es gelten folgende Eigenschaften: $$p\rightarrow q \equiv \neg p \lor q \\ p \land (q\lor r) \equiv (p \land q)\lor (p\land r) \\ p\lor (q\land r )\equiv (p\lor q ) \land (p\lor r ) \\ \neg (p\lor q )\equiv \neg p \land \neg q \\ \neg (p \land q) \equiv \neg p \lor \neg q$$
Wir haben also folgendes:
$$\left(a\land b \right)\rightarrow c \\ \equiv \neg \left(a\land b \right) \lor c \\ \equiv \left(\neg a \lor \neg b \right)\lor c \\ \equiv \neg a \lor \neg b \lor c \\ \equiv \left(\neg a \lor c \right) \lor \left(\neg b \lor c \right) \\ \equiv \left(a\rightarrow c \right) \lor \left( b \rightarrow c \right) $$