Es gelten folgende Eigenschaften: $$p\rightarrow q \equiv \neg p \lor q \\ p \land (q\lor r) \equiv (p \land q)\lor (p\land r) \\ p\lor (q\land r )\equiv (p\lor q ) \land (p\lor r ) \\ \neg (p\lor q )\equiv \neg p \land \neg q \\ \neg (p \land q) \equiv \neg p \lor \neg q$$
Wir haben also folgendes: $$\left(a\land \left(a\rightarrow b \right) \right) \rightarrow b \\ \equiv \left(a\land \left( \neg a \lor b \right) \right) \rightarrow b \\ \equiv \left(\left(a\land \neg a\right)\lor \left(a\land b\right) \right) \rightarrow b \\ \equiv \left(0\lor \left(a\land b\right) \right) \rightarrow b \\ \equiv \left(a\land b\right)\rightarrow b \\ \equiv \neg (a\land b) \lor b \\ \equiv \left( \neg a\lor \neg b \right) \lor b \\ \equiv \neg a \lor \neg b \lor b \\ \equiv 1$$
Da entweder b oder ¬b 1 ist, ist die Disjunktion von a, b, ¬b gleich 1.