0 Daumen
1,9k Aufrufe

dies sind die musterlösungen und ich verstehe nicht warum der winkel alpha 2x der angegeben winkel 65 grad sein solle bitte um erklärung.Bild Mathematik

Avatar von

2 Antworten

+1 Daumen

Der Winkel 65° ist ein Peripheriewinkel gegenüber der Strecke \(AB\) wie folgende Skizze zeigt.

Bild Mathematik

Der blaue Winkel \(APB\) bei \(P\) hat immer den Wert 65° egal wo sich der Punkt \(P\) auf dem Kreisbogen befindet. Zur Veranschaulichung habe ich Dir die Position \(P\prime\) eingezeichnet. Der gelbe Winkel ist der zugehörige Mittelpunktswinkel \(AMB\) und hat demnach den doppelten Wert - also 130°.

Und das gilt unabhängig von der Lage der Punkte \(A\) und \(B\) auf dem Kreis.

Bild Mathematik

Da die Dreieck \(BPM\) und \(PAM\) gleichschenklig sind, sind ihre Basiswinkel gleich groß und folglich ist die Summe der grünen Winkel gleich dem blauen Winkel - dieser sei \(\varphi\). Die Winkelsumme im Dreieck \(ABP\) ist 180° folglich ist die Summe der roten \(=180°-2\cdot \varphi\). Und der gelbe Mittelpunktswinkel ist auf Grund der Winkelsumme im Dreieck \(ABM\) \(=180°- \sum{ rot}=180°-180°+2\varphi=2\varphi\).

Gruß Werner

Avatar von 49 k
0 Daumen

Das ist der Satz vom Umfangswinkel (Peripheriewinkel):

Der Mittelpunktswinkel (Zentriwinkel) ist immer doppelt so groß wie der Umfangswinkel über dem gleichen Kreisbogen.

Avatar von 289 k 🚀


okay aber warum ist dieser winkel ein peripheriwinkel, also ich dachte für einen peripheriwinkel müssen die sehnen an den jeweiligen enden eines halbkreises enden?

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community