Hi,
Aufgabe (b)
das Integral kann approximiert werden durch
$$ (1) \quad \frac{b-a}{n} \cdot \sum_{i=0}^n q^{a+\frac{i}{n}(b-a)} = \frac{b-a}{n} \cdot \frac{q^b q^\frac{b}{n} - q^a q^\frac{a}{n} }{q^\frac{b}{n} -q^\frac{a}{n}} $$
Bei (1) musst Du die Formel für die geometrische Reihe anwenden.
Betrachte nun den Ausdruck
$$ (2) \quad \frac{n}{b-a} \cdot \left( q^\frac{b}{n} -q^\frac{a}{n} \right) = \frac{q^\frac{a}{n}}{b-a} \cdot n \cdot \left( q^\frac{b-a}{n} - 1 \right) $$
Entwicklung der rechten Seite von (2) in eine Taylorreihe ergibt
$$ \frac{n}{b-a} \cdot \left( q^\frac{b}{n} -q^\frac{a}{n} \right) = \frac{q^\frac{a}{n}}{b-a} \cdot n \cdot \left( \frac{b-a}{n} \cdot \ln(q) + o\left( \frac{1}{n^2} \right) \right) \to \ln(q)$$
Insgesamt geht (1) also gegen
$$ (4) \quad \frac{q^b-q^a}{\ln(q)} $$