Hi,
der Einfachheithalber gelte:
540 · (12 + 0.036·(12 + 1) / 2) · (1.036n - 1) / (1.036 - 1) = a*(1.036^n - 1)
Also 540 · (12 + 0.036·(12 + 1) / 2) / (1.036 - 1) = a
23934.14 ·1.036n = a*(1.036^n - 1)
23934.14 ·1.036n = a*1.036^n - a |-a*1.036^n
23934.14 ·1.036n - a*1.036^n = - a
1,036^n(23934,14 - a) = -a |:Linke Klammer
1,036^n = -a/(23934,14-a) |ln
n*ln(1,036) = ln(-a/(23934,14-a)) |ln(1,036)
n = ln(-a/(23934,14-a)) / ln(1,036)
Habs mal in wolfram alpha eingegeben. Soll woll n ≈ 3,95 sein ;).
https://www.wolframalpha.com/input/?i=23934.14+%C2%B71.036%5En++%3D++540+%C2%B7+(12+%2B+0.036%C2%B7(12+%2B+1)+%2F+2)+%C2%B7+(1.036%5En+-+1)+%2F+(1.036+-+1)
Grüße