\(\frac{1}{1+ti} = \frac{1\cdot(1-ti)}{(1+ti)\cdot(1-ti)} = \frac{1-ti}{1^2 - (ti)^2} = \frac{1-ti}{1+t^2} = \frac{1}{1+t^2} - \frac{t}{1+t^2}i\)
Angenommen es existieren ein \(z_0\in\mathbb{C}\) und ein \(r>0\) mit \(\left|\frac{1}{z}-z_0\right| = r\) für alle \(z\in L\). Seien dann \( a,b,c\in \mathbb{R} \), so dass
(1) \(\left| \left(\frac{1}{1+t^2} - \frac{t}{1+t^2}i\right) - (a+bi)\right| = c \)
für alle \(t \in \mathbb{R}\) gilt. Dann gilt Gleichung (1) insbesondere auch für \(t=0\). Einsetzen liefert
(2) \( (1-a)^2 + b^2 = c^2\).
Setze aus den gleichen Überlegungen \(t=1\) und \(t=-1\) in Gleichung (1) ein um die Gleichungen (3) und (4) zu bekommen. Löse das Gleichungssystem aus den Gleichungen (2), (3) und (4) um Kandidaten für \(z_0\) und \(r\) zu bekommen.
Zu zeigen bleibt dann noch, dass diese Kandidaten Gleichung (1) nicht nur für \(t=0,1,-1\) erfüllen, sondern tatsächlich für alle \(t\in\mathbb{R}\),