Das geht sogar EXAKT:
e^{-3 x/5} ( e^{x/5}-1)=1/24
e^{3 x/5} + 24 = 24 e^{x/5} Substitution: u=e^{x/5};x=ln(u)*5
u³-24u+24=0
PQRST-Formel: http://www.lamprechts.de/gerd/Quartische_Gleichung.html
u1 = -(2 (1 + i sqrt(3)))/(1/2 (-3 + i sqrt(23)))^{1/3} - (1 - i sqrt(3)) (1/2 (-3 + i sqrt(23)))^{1/3}
u2 = -(2 (1 - i sqrt(3)))/(1/2 (-3 + i sqrt(23)))^{1/3} - (1 + i sqrt(3)) (1/2 (-3 + i sqrt(23)))^{1/3}
u3 = 4/(1/2 (-3 + i sqrt(23)))^{1/3} + 2^{2/3} (-3 + i sqrt(23))^{1/3}
Rücksubst:
x1 = ln(-(2 (1 + i sqrt(3)))/(1/2 (-3 + i sqrt(23)))^{1/3} - (1 - i sqrt(3)) (1/2 (-3 + i sqrt(23)))^{1/3})*5
=8.3744034136050537440172876481+15.7079632679489661923132169163975 i
x2 = ln(-(2 (1 - i sqrt(3)))/(1/2 (-3 + i sqrt(23)))^{1/3} - (1 + i sqrt(3)) (1/2 (-3 + i sqrt(23)))^{1/3})*5
=0.234192705737269132476396603359162016611826
x3 = ln(4/(1/2 (-3 + i sqrt(23)))^{1/3} + 2^{2/3} (-3 + i sqrt(23))^{1/3})*5
=7.281673032397405221741023755018131953750957788
Probe mit allen 3 Lösungen:
24*(e^{-4x/10}-e^{-6x/10}),x=8.3744034136050537440172876+15.7079632679489661923132 i
ergibt 1
24*(e^{-4x/10}-e^{-6x/10}),x=0.234192705737269132476396603359162016611826
ergibt 1
24*(e^{-4x/10}-e^{-6x/10}),x=7.281673032397405221741023755018131953750957788
ergibt 1