Ohne Substitution:
Nullstellen von \( f(x) = -\frac{5}{81}x^4 + \frac{10}{9} x^2 - 1\)
\(-\frac{5}{81}x^4 + \frac{10}{9} x^2 - 1=0|\cdot(-\frac{81}{5})\)
\(x^4 -18 x^2=-\frac{81}{5}\)
\(x^4 -18 x^2+9^2=-\frac{81}{5}+9^2\)
\( (x^2 -9)^2=\frac{324}{5}|±\sqrt{~~}\)
1.)
\( x^2 -9=\frac{18}{\sqrt{5}}\)
\( x^2 =9+\frac{18}{\sqrt{5}}\)
\( x_1 =\sqrt{9+\frac{18}{\sqrt{5}}}\)
\( x_2 =-\sqrt{9+\frac{18}{\sqrt{5}}}\)
2.)
\( x^2 -9=-\frac{18}{\sqrt{5}}\)
\( x^2 =9-\frac{18}{\sqrt{5}}\)
\( x_3 =\sqrt{9-\frac{18}{\sqrt{5}}}\)
\( x_4 =\sqrt{9-\frac{18}{\sqrt{5}}}\)