f(x)=x^3-31x-4
g: 4x+y=7
bitte um hilfe
1. Bestimme die Steigung von g. ---> m
2. Leite f(x) nach x ab. ---> f ' (x)
3. Löse die Gleichung f '( x) = m nach x auf.
4. Was hast du jetzt gefunden?
Skizze: ~plot~ x^3-31*x-4; 7-4x; [[-7|7|-100|100]] ~plot~
Die Gerade hat die Steigung -4. Bei Kurven ist die Steigung in einem Punkt gleich der Ableitung in diesem Punkt. f '(X)=3x2-31. Es soll also
3x2-31=-4 sein. Das ist für x=±3 der Fall. Ein Punkt an der Stelle x=3 ist dann
(x;/ f(x))=(3; f(3))=(3; 33-31·3-4).
Ein anderes Problem?
Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos