\(\tiny \left\{ \left(\begin{array}{rrr}1&0&0\\-2&1&0\\0&0&1\\\end{array}\right), \left(\begin{array}{rrrrrr}-2&2 \; i&0&2&0&-4\\-4&4 \; i&-i&7&-2&-8\\1&i&2&-1&2&4\\\end{array}\right)=\left(\begin{array}{rrrrrr}-2&2 \; i&0&2&0&-4\\0&0&-i&3&-2&0\\1&i&2&-1&2&4\\\end{array}\right), Zeile2 − = 2 Zeile1 \right\} \)
\(\tiny \left\{ \left(\begin{array}{rrr}1&0&0\\0&1&0\\\frac{1}{2}&0&1\\\end{array}\right), \left(\begin{array}{rrrrrr}-2&2 \; i&0&2&0&-4\\0&0&-i&3&-2&0\\1&i&2&-1&2&4\\\end{array}\right)= \left(\begin{array}{rrrrrr}-2&2 \; i&0&2&0&-4\\0&0&-i&3&-2&0\\0&2 \; i&2&0&2&2\\\end{array}\right), Zeile3 += 0.5 Zeile1 \right\} \)
\(\tiny \left\{ \left(\begin{array}{rrr}1&0&-1\\0&1&0\\0&0&1\\\end{array}\right), \left(\begin{array}{rrrrrr}-2&2 \; i&0&2&0&-4\\0&0&-i&3&-2&0\\0&2 \; i&2&0&2&2\\\end{array}\right)=\left(\begin{array}{rrrrrr}-2&0&-2&2&-2&-6\\0&0&-i&3&-2&0\\0&2 \; i&2&0&2&2\\\end{array}\right), Zeile1 − = 1 Zeile3 \right\} \)
\(\tiny \left\{ \left(\begin{array}{rrr}1&0&0\\0&0&1\\0&1&0\\\end{array}\right), \left(\begin{array}{rrrrrr}-2&0&-2&2&-2&-6\\0&0&-i&3&-2&0\\0&2 \; i&2&0&2&2\\\end{array}\right)=\left(\begin{array}{rrrrrr}-2&0&-2&2&-2&-6\\0&2 \; i&2&0&2&2\\0&0&-i&3&-2&0\\\end{array}\right), Zeilentausch 2<>3 \right\} \)
\(\tiny \left\{ \left(\begin{array}{rrr}\frac{-1}{2}&0&0\\0&1&0\\0&0&1\\\end{array}\right), \left(\begin{array}{rrrrrr}-2&0&-2&2&-2&-6\\0&2 \; i&2&0&2&2\\0&0&-i&3&-2&0\\\end{array}\right)= \left(\begin{array}{rrrrrr}1&0&1&-1&1&3\\0&2 \; i&2&0&2&2\\0&0&-i&3&-2&0\\\end{array}\right), Zeilenmultiplikation *-0.5 \right\} \)
\(\tiny \left\{ \left(\begin{array}{rrr}1&0&0\\0&\frac{-i}{2}&0\\0&0&1\\\end{array}\right), \left(\begin{array}{rrrrrr}1&0&1&-1&1&3\\0&2 \; i&2&0&2&2\\0&0&-i&3&-2&0\\\end{array}\right)=\left(\begin{array}{rrrrrr}1&0&1&-1&1&3\\0&1&-i&0&-i&-i\\0&0&-i&3&-2&0\\\end{array}\right), Zeilenmultiplikation *-i/2 \right\} \)
\(\tiny \left\{ \left(\begin{array}{rrr}1&0&0\\0&1&-1\\0&0&1\\\end{array}\right), \left(\begin{array}{rrrrrr}1&0&1&-1&1&3\\0&1&-i&0&-i&-i\\0&0&-i&3&-2&0\\\end{array}\right)= \left(\begin{array}{rrrrrr}1&0&1&-1&1&3\\0&1&0&-3&2 - i&-i\\0&0&-i&3&-2&0\\\end{array}\right), Zeile2 − = 1 Zeile3 \right\} \)
\(\tiny \left\{ \left(\begin{array}{rrr}1&0&-i\\0&1&0\\0&0&1\\\end{array}\right), \left(\begin{array}{rrrrrr}1&0&1&-1&1&3\\0&1&0&-3&2 - i&-i\\0&0&-i&3&-2&0\\\end{array}\right)= \left(\begin{array}{rrrrrr}1&0&0&-1 - 3 \; i&1 + 2 \; i&3\\0&1&0&-3&2 - i&-i\\0&0&-i&3&-2&0\\\end{array}\right), Zeile1 − = -i Zeile3 \right\} \)
\(\tiny \left\{ \left(\begin{array}{rrr}1&0&0\\0&1&0\\0&0&i\\\end{array}\right), \left(\begin{array}{rrrrrr}1&0&0&-1 - 3 \; i&1 + 2 \; i&3\\0&1&0&-3&2 - i&-i\\0&0&-i&3&-2&0\\\end{array}\right)=\left(\begin{array}{rrrrrr}1&0&0&-1 - 3 \; i&1 + 2 \; i&3\\0&1&0&-3&2 - i&-i\\0&0&1&3 \; i&-2 \; i&0\\\end{array}\right), Zeilenmultiplikation * i \right\} \)