a)
[0, 0, 20; 0.25, 0, 0; 0, b, 0]^2 = [0, 0, 20; 0.25, 0, 0; 0, b, 0] * [0, 0, 20; 0.25, 0, 0; 0, b, 0] = [0, 20·b, 0; 0, 0, 5; 0.25·b, 0, 0]
[0, 0, 20; 0.25, 0, 0; 0, b, 0]^3 = [0, 0, 20; 0.25, 0, 0; 0, b, 0] * [0, 20·b, 0; 0, 0, 5; 0.25·b, 0, 0] = [5·b, 0, 0; 0, 5·b, 0; 0, 0, 5·b]
b muss also 1/5 = 0.2 sein, damit U^3 die Einheitsmatrix ist.
b)
b muss 2*0.2 = 0.4 sein, damit U^3 die zweifache Einheitsmatrix ist.
E(x) = [1, 0, 0]·[0, 0, 20; 0.25, 0, 0; 0, 0.4, 0]^x·[90; 45; 10]
[0, [90];
1, [200];
2, [360];
3, [180];
4, [400];
5, [720];
6, [360];
7, [800];
8, [1440];
9, [720];
10, [1600]]
f(x) = 90 * 2^{x/3}
[0, 90;
1, 113.3928944;
2, 142.8660946;
3, 180;
4, 226.7857889;
5, 285.7321893;
6, 360;
7, 453.5715779;
8, 571.4643787;
9, 720;
10, 907.1431559]